
From: The Proceedings of the First IBM P=ac2 Conference, October 6-8, 2004,IBM T.J. Watson Research Center, Yorktown Heights, NY, USA.
Copyright 2004, A.K. Uht and R.J. Vaccaro.

TEAPC: Adaptive Computing and
Underclocking in a Real PC

Augustus K. Uht and Richard J. Vaccaro
University of Rhode Island

Microarchitecture Research Institute
Department of Electrical and Computer Engineering

4 East Alumni Ave.
Kingston, RI 02864, USA

{uht@ele.uri.edu, vaccaro@ele.uri.edu}

Abstract
TEAPC is an IBM/Intel-standard PC realization of
the TEAtime performance “maximizing” adaptive
computing algorithm, giving performance beyond
worst-case-specifications. TEAPC goes beyond the
TEAtime algorithm by adapting to the current CPU
load. It is also the first machine to use extensive
underclocking for disaster tolerance, low power
consumption and high reliability. This is all done
dynamically, at runtime, on an unmodified standard
operating system (Windows 2000) with a purely
software-implemented feedback-control based
algorithm.

1 Introduction
Adaptive systems “maximize” performance or
“minimize” power consumption with respect to
changes in environmental, operating and
manufacturing conditions. Underclocking reduces the
operating frequency below that normally specified,
reducing power consumption and increasing
reliability. In this paper we present a prototype based
on the standard IBM/Intel PC architecture realizing
both adaptive computing and underclocking.

In prior work we demonstrated an adaptive system
called TEAtime with a simple physical prototype (see
Section 2). We wanted to fully demonstrate
TEAtime’s potential by putting it in a production
microprocessor, but that is problematic. We therefore
did the next best thing: demonstrating TEAtime’s
adaptive attributes on a real PC assembled with
COTS (Commercial Off-The-Shelf) parts. TEAPC,
the resulting prototype, goes further than TEAtime: It
adapts to current CPU computational loading, and
greatly underclocks for disaster tolerance and low
power, while still functioning normally.

The initial TEAPC implementation used timing-
based sensors, similar to that used in the TEAtime
prototype. For reasons to be discussed later, this was
abandoned in favor of basing the real-time
performance or frequency of the CPU on the CPU’s

real-time internal temperature. Since this is the major
component of variation of timing within an Intel
microprocessor (the CPU’s core voltage is highly
regulated and approximately constant), it mirrors the
original TEAtime philosophy. Further, it is possible
to base the real-time performance on the real-time
power consumption of the entire PC; the latter is
partially addressed in this paper.

We have implemented the entire control system in
software, in a Windows application. It runs in a
normal application mode on Windows 2000,
multitasking normally with other applications. CPU
frequency and core voltage are changed dynamically,
based on the output of a feedback control system
using the CPU chip temperature as its primary input.
While details such as specific hardware device
addresses may change, the basic approach and
detailed realization of the control loop and
underclocking should be implementable on any PC to
be built, as well as many that already exist.

Summarizing, our goals are: TEAPC should have the
adaptation and frequency maximization properties of
TEAtime; additionally, TEAPC should realize
adaptation to varying CPU loads, low power
consumption on-demand, and disaster tolerance. All
of these goals have been realized with the aid of a
purely software-based feedback control system,
employing CPU frequency underclocking as needed.

The rest of the paper is organized as follows. Section
2 discusses prior work and background information.
Section 3 describes the initial TEAPC solution and
real system constraints. In Section 4 TEAPC’s final
version is discussed, along with the experimental
methodology. Section 5 presents the experiments,
data, and analyses. Examples of different TEAPC
operating scenarios are given in Section 6. We
conclude in Section 7.

2 Prior Work
Performance- and power- adaptive computing
approaches have only been proposed in the last

45

decade or so. Most techniques are mainly concerned
with power reduction [1, 4, 5], while a few recent
methods consider performance enhancement [6, 8].
Most methods use voltage-scaling for power-
reduction. The recent Razor proposal [2] and the
earlier TIMERRTOL model [11] are unusual in that
timing errors are not avoided, but rather are used as a
feedback mechanism to regulate either power
consumption (Razor) or performance
(TIMERRTOL). They employ different methods to
recover from the timing errors. One of the key
observations that can be made about all of this
adaptive computing work is that in general the same
basic mechanism can be used for either power
consumption or performance enhancement (or both).
These methods achieve better-than-worst-case
performance. In the case of Razor, its operating
voltage is lowered below specs, reducing power.

Skadron et al [9] first considered the use of formal
feedback control theory as applied to the on-chip
control of chip temperature of a microprocessor.
Instruction fetch toggling was used to control the
chip temperature. In [10] on-chip frequency-scaling
was used to regulate the chip temperature using a
simple linear relationship between frequency and
temperature; formal control theory was not needed
since the relevant thermal delays and changes in
frequency and temperature were small. Slowdown
was also small. Reliability could not be enhanced. In
TEAPC, performance can be increased with the
particular methods used, and at the system level,
without chip modification. Should reliability be an
issue, TEAPC can instead enhance that.

Rohou and Smith [7] used operating-system based
software to control temperature of a chip in a system
via frequency scaling; performance only decreases,
never increases. The frequency control mechanism
puts the CPU in either a doze state or a full operation
state, while TEAPC utilizes sophisticated feedback
control for adjustment of frequency, temperature and
reliability. TEAPC executes all code normally, all of
the time. Also, TEAPC does not require operating
system modifications, and can increase performance.

Our recent work, TEAtime (Timing Error Avoidance)
[12-14], approximated a maximization of
performance much above that normally allowed by
standard design practices. The key component was
tracking logic, a one-bit wide copy of the worst-case-
delay path between any pair of flip-flops in the digital
system, plus a small delay margin. In operation, the
tracking logic is fed a never-ending stream of
alternating one’s and zero’s. The operating frequency
of the system is incrementally increased until an error
occurs in the output of the tracking logic; at this point

the frequency is decreased until the error ceases, and
then the process repeats. Since the tracking logic is
guaranteed by design to be slower than any other path
in the system, any timing error will occur in the
tracking logic first, and only there. Hence, timing
errors in the main system are completely avoided.
This also completely avoids added pipeline stalls or
other additional clock cycles. Throughput increases
of almost a factor of two were demonstrated in a
physical TEAtime prototype.

TEAtime adapted to changes in the environment
(e.g., temperature), operating conditions (e.g., supply
voltage) and manufacturing conditions (e.g., quality
of a given production run), dynamically
“maximizing” performance

While the TEAtime prototype demonstrated the basic
worth and functionality of the TEAtime idea, it used
a very simple home-brew processor implemented on
an FPGA. In our desire to extend the TEAtime ideas
and applications, we decided to implement and
evaluate TEAtime on a real PC, using COTS parts.
We have created a high-performance feedback-
control system using normal application software, not
requiring any operating system modifications.
Disaster tolerance is achieved, and reduced power
consumption and increased reliability may be user-
specified. TEAPC is the result.

3 Initial TEAPC Architecture
and Control System
3.1 Foundations of TEAPC
The guiding principle in the design of TEAPC was to
use as much COTS hardware and software as
possible. To this end, TEAPC’s foundation is a
standard IBM/Intel PC architecture assembled out of
COTS parts. (A commercial PC was not considered,
since it would be unlikely to allow the kind of
internal access we required. However, the results of
this work can easily be applied to commercial PC’s,
during their design, construction and/or testing.)

We wished to be conservative in our results, and
knew that it is always hardest to speedup or otherwise
control more advanced components. We therefore
assembled TEAPC out of what were at the time high-
end parts: a 3.0 Ghz Intel Pentium 4 microprocessor
with an 800 MHz bus and an Intel 875P chipset (a
“chipset” is the glue logic that connects the CPU to
the main memory and I/O devices; in Figure 4 it is
the Northbridge/Southbridge pair of chips). The main
memory used high speed DDR (Dual Data Rate)
dynamic RAM.

46

3.2 Initial Approach Towards a
TEAPC Prototype
Our initial plan and activities were to closely model
TEAPC operation on that of the TEAtime prototype.
While we were of course unable to embed tracking
logic in the existing components, especially the CPU,
we were still able to create tracking sensors whose
delay varied with temperature, supply voltage, etc.
While we did not fully validate the following, since
each sensor was a standard CMOS logic gate
integrated circuit we felt the sensor would to a large
degree mirror the sensitivity of the internal logic of
the parts to be monitored.

We monitored four components on the PC’s
motherboard: the CPU, the Northbridge and the two
main memory modules. The sensors were 4-gate
surface-mount IC’s with 50 mil (thousandths of an
inch) pitch leads. Each sensor was thermally-coupled
to its component by fixing the top (non-lead) side of
the sensor to the component with thermal grease or
tape between the two. In reality, to avoid complex
machining, each sensor was attached to the heat sink
of its component, as close as possible to the
component itself.

Each sensor’s gates were wired in series at the
sensor, with an input, an output and power
connections brought out on four 30 gauge wires to an
added FPGA. The FPGA contained counters and
other control circuitry to measure the delay through
each sensor. The FPGA in turn connected to TEAPC
itself through the parallel port. The teapc program
received the digitized delays, and used them as inputs
to the TEAPC control algorithm.

The control algorithm uses the CPU’s frequency as
the algorithm’s dependent output. Every component’s
temperature is dependent on the component’s power
dissipation, and the latter is roughly proportional to
the component’s operating frequency. Since each of
the components’ clocks has roughly the same
frequency as the CPU’s clock, they all heat up at
roughly the same time. This in turn heats the sensors,
increasing their delay, and the feedback loop is
complete; see Figure 1.

3.3 The Feedback Control System
Hope springing eternal, the first attempt at a control
system was to use essentially the same one as in the
original TEAtime prototype: a zero-delay feedback
system incrementally increasing or decreasing the
frequency (Note: from now on, ‘frequency’ refers to
the CPU’s frequency, which indirectly controls the
rest of the components’ frequencies.) The classical
method worked poorly, often giving large frequency

oscillations (peg-to-peg) and slow response. The
main reason for the inadequacy of this simplistic
approach is the thermal capacitance of the
components’ heatsinks, with the resulting roughly
exponential time delay between component heating
and sensor response.

We then used formal feedback control system theory
to eventually achieve a fast frequency response to
thermal changes. The basic control input is a
temperature setting, Tset, used by the control system
to maintain a CPU temperature of Tset degrees C.
Tset would typically be made equal to a temperature
just above the maximum CPU frequency under full
load, so as to maximize performance. However,
should the user desire to save power or increase the
reliability of the CPU Tset can be reduced.

The original system had four feedback loops (see
Figure 1), one per sensed component, and only one
dependent control variable, the frequency. The
system still oscillated greatly. This is because the
system is formally uncontrollable: Its
controllability matrix is not full rank. Physically, the
feedback loops cannot be independently controlled
since they have the same input. Since the only
component near to overheating was the CPU, the
other three sensors were removed from the control
system. We verified the safety of the other
components only after monitoring the temperature of
each of them under many conditions, using a
thermocouple placed next to each sensor.

The control system went through several single-pole
design iterations, an example of which is shown in
Figure 2. While the frequency oscillations were
reduced, the system still responded slowly.

Our current solution to the control system design
problem completely eliminated the external sensor
system, instead relying on the internal temperature of
the CPU for the only input to the system. This sped
up the system considerably. Second, the final system
was designed with state-of-the-art discrete-time
techniques as an integral control system using state-
space methods [3, 15]. The system was modeled from
measured input/output data using the System
Identification Toolbox (from the Mathworks). The
Toolbox returned a second-order model, and this was
approximated with a first-order system model. The
latter is shown in Figure 3. This system has excellent
response characteristics, having a frequency settling
time of only about 10 seconds for a Tset change
equivalent to a change in frequency from 2.5 GHz to
3.5 GHz of the CPU under full load.

47

KG

∆sens∆sens
KsT

sens/¯K
KNs

N/sens
Tset ()¯C

-

+
+

273.15 ¯K ∆¯K ∆N
1
s

N

freq/N
KfN

freq
(Hz)

Clock
SynthesizerComponent, Heatsink,

and Sensor

KTs
¯K/sens

+

+
¯K Ksf

s + A

sens CPU

KTs
¯K/sens

+

+
¯K Ksf

s + A

sens Northbridge

KTs
¯K/sens

+

+
¯K Ksf

s + A

sens Memory Module A

KTs
¯K/sens

+
¯K Ksf

s + A

sens Memory Module B

Figure 1. First formal feedback control system tried. Each of four sensors has its own feedback path.

KG
KTs

¯K/sens

∆sens∆sens
KsT

sens/¯K
KNs

N/sens
Tset ()¯C

-

+
+

273.15 ¯K

23.09

∆¯K ¯K∆N

1
s

N

freq/N

freq

KsfKfN
s + A

sens

0.5939 1/27.05
A=0.01526

11.9317e6

(Hz)

Clock Synthesizer
and CPU

Figure 2. Single sensor, single feedback path control system.

KG

KFA

KTf
¯C/freq

∆N
KNT
N/¯K

Tset ()¯C

-

+

-

+

17.4

∆¯K
¯C

∆N
1
s

N N
freq freq

freq/N
KfN B

s + A
B=0.0364

A=0.03345
8.26e6

(Hz) (Hz)

0.28

70.0

Clock Synthesizer, CPU
and CPU internal sensor

Figure 3. Final TEAPC feedback control system.

48

4 Final Version of TEAPC and
Experimental Setup
The final version of TEAPC is shown in Figure 4,
with its major relevant components listed in Table 1.
Figure 5 is a photograph of TEAPC.

4.1 Final TEAPC System
With the external sensors and associated extra control
hardware eliminated from the system, the new parts
of the TEAPC solution are only software, utilizing
hardware information and control paths already
existing on the motherboard. Referring to Figure 4,
the teapc program reads the CPU’s core
temperature, core voltage, and fan speed from the
Super I/O chip. The program reads and sets the CPU
frequency by accessing the Clock Synthesizer.
Likewise, the program reads and sets the CPU core
voltage via the Vcore Regulator Controller. The
Synthesizer and Regulator are accessed with the two-
wire SMBUS through the Southbridge. Program
access to all of these components, as well as the
control registers of the chipset itself, is made via the
x86 I/O address space. Readily-available freeware off
of the Web is used to directly access the I/O space
from within the (Windows) program. Presumably, a
commercial version of the software would use safer
indirect access within the Windows API (Application
Program Interface).

4.2 Software Realization of
Modified TEAtime Algorithm.
The TEAPC control program was written in C and
C++. The program is only 800 Kbytes large,
including the feedback control system. The program
uses 5% or less of the CPU’s computational capacity.

The control loop is updated every second. This is
straightforward. The non-CPU parts of the control
loop are represented in the program by a list of the
blocks previously shown. At an update point, the
program starts with the input data (the running-
averaged CPU temperature), and re-calculates the
control block values around the loop. The new CPU
frequency is the main output, with the CPU core
voltage sometimes linked to the frequency. For
safety, the maximum and minimum possible output
frequencies are hard limits; when reached, we say the
frequency has “pegged” (as in an old analog meter).

4.3 Added Hardware for
Experiments
A simple on/off switch was added for the disaster
tolerance experiment. An external power meter with

a serial interface was also added to measure changes
in total PC power consumption.

5 Experiments
The experiments characterized TEAPC’s operation
and demonstrated its achievement of the project’s
goals. Only the CPU frequency was directly varied
by the feedback control system. The Northbridge and
memory clock frequencies are a fixed fraction of the
CPU frequency, and thus also change. In two cases
the CPU core voltage was varied as a function of the
CPU clock frequency. All other components in the
PC used their standard operating conditions, in
particular their normal frequencies and voltages.

In general, we see that although there is some
oscillation in the dependent variables, it is not great.
The CPU temperature may still oscillate, even with a
constant CPU frequency; this is most likely due to
load changes in the CPU-100%-loading burn-in
program (SiSoft’s Sandra).

In the experiments, Tset was often set to a point
lower than that needed for maximum performance.
This was done both to characterize the system and to
demonstrate its operational flexibility; see Table 3.

5.1 Step Response to Frequency
Change
Table 2 shows TEAPC’s CPU temperature’s reaction
speed to changes in CPU frequency. Overall, the
CPU neither heats up or cools very quickly. The
settling time varies substantially with load and
direction of frequency change. It is relatively easy to
heat up the CPU, but takes considerably longer to
cool it, regardless of the CPU’s load. This is intuitive,
as it is usually the case in thermodynamics that
forced addition or removal of energy to a system will
heat up or cool, respectively, faster than with a
passive transfer mechanism. In TEAPC’s case the
increasing frequency directly increases the CPU’s
power consumption and temperature, whereas
removal of the resulting heat depends on the thermal
resistance and capacitance of the passive cooling
system.

Interestingly, the response times approximately
double from a full load condition to an approximately
unloaded condition. This may arise from the internal
CPU power control system, which shuts down major
sections of the CPU when the sections are not used.
Hence, in a lightly loaded system a given increase in
frequency increases power consumption less than a
fully loaded system, in which the entire chip is
affected by the frequency change.

49

CPU
Intel P4

Northbridge
Intel 875P

Southbridge
I/O

Controller
Intel ICH5R

Main Memory
1 GB Dual Channel

400 MHz
Ultra

Super I/O
ITE 8712F

Clock
Synthesizer
ICS 952635

CPU Vcore
Regulator
Control

CPU
Vcore

Power Supply

FSB

(FSB - Front Side Bus)

LPC Bus

(LPC - Low Pin Count)

SMBUS - IIC Bus

CPU Clock Memory Clock

CPU
Fan

Speed

CPU
Vcore
Volt.

CPU
core

Temp.

Vcore VID

VID

Only directly relevant components
and connections are shown.

(Environment
Monitor)

Figure 4. Major motherboard structures used in TEAPC control system.

Table 1. Major TEAPC components and extra experimental equipment.

PC Component Manufacturer Part Number/Description
Motherboard Gigabyte GA-8KNXP (Rev. 2); w/DPS regulator

CPU Intel P4 3.0 GHz, 800 MHz bus
Chipset Intel 875P, ICH5R
Clock Synthesizer ICS ICS952635
Super I/O (Environment Mon.) ITE IT8712F V0.6
CPU Volt. Regulator Control ITE IT8206R V0.1

Main Memory Ultra
U10-5903R; 2 x 512 MB;
400 MHz DDR, Dual Channel
(Operated at 320 MHz.)

Operating System Microsoft Windows 2000 SP4, HT disabled
Disk System – RAID 0+1 ITE GigaRAID IT8212F

Disks Maxtor 4 x 6E040L0, 40 GB, 133MHz IDE
Equipment for experiments only

Fan Controller & Temp. Mon. Thermaltake Hardcano 12; for 4 fans, 4 thermocouples

Power Meter
Electronic
Educational
Devices

watts up? PRO
(Note: this is the unit’s model name.)

CPU Fan Controller custom On/Off, control sel. (MOBO or Hardcano)

Table 2. Step response of CPU temperature to CPU frequency changes, under differing loads.

Run
ID

CPU
Utilization

Frequency Transition
(GHz)

Start Temp.
(deg. C.)

End Temp.
(deg. C.)

Settling Time
(2%) (sec.)

91 100% 3.5 to 2.5 59.3 53.7 90
92 100% 2.5 to 3.5 52.5 58.9 60
93 ~5% 3.5 to 2.5 53.1 48.0 170
94 ~5% 2.5 to 3.5 48.0 52.9 130

50

Figure 5. TEAPC prototype, with experiment
instrumentation shown on the display.

5.2 Performance Maximization
Figure 6 demonstrates TEAPC’s ability to operate at
better-than-worst-case performances via dynamic
adaptation of the clock frequency to desired changes
in operating temperature. In the figure, TEAPC is
under full load and starts executing in an
underclocked power-saving mode, then has its Tset
raised appropriately. TEAPC rapidly increases its
frequency, strictly in response to the control system.
It reaches full performance (the hard upper-limit
‘peg’) within about 10 seconds, even though it takes
longer for the actual CPU temperature to reach its
final value. The CPU core voltage was held constant
at its high value, 1.5125 V., and was not linked to the
frequency.

5.3 Modest Frequency Changes
Figure 7 shows the results of a small step change in
frequency, midway between the two peg points.
Voltage-to-frequency linking was used again. By
changing Tset in the usual way, the frequency was
changed from 2.75 GHz to 3.25 GHz, with the final
average value reached after about 150 seconds. From
the results we see that small frequency changes are
also handled by the control algorithm, although
pegging may still occur to a limited degree.

5.4 Load Adaptation
TEAPC also dynamically and automatically adapts to
changes in computation load. In Figure 8 the system
is initially stable at the upper peg point of 3.5 GHz,
and under no load. At the indicated point, the Sandra
CPU-burn program is started, putting the CPU under
full load. The control system senses the rapid
increase in CPU temperature, and immediately drops
the frequency. Within about 50 seconds TEAPC’s
frequency has dropped to about 2.65 GHz, on
average, while the CPU temperature has stayed
relatively constant around the temperature set point.

The power consumption stays about the same. Again,
the CPU core voltage was held constant at its high
value, 1.5125 V., and was not linked to the
frequency.

We performed the same experiment, this time with
the CPU core voltage a function of frequency. The
highest frequency corresponds to the highest voltage,
and the lowest frequency corresponds to the lowest
voltage. The results are shown in Figure 9. The lower
voltage and hence reduced requirement for power
allow a higher final operating frequency, about 3.0
GHz, with no change in the power consumption.
Thus, the voltage-to-frequency linking results in
higher performance for the same power.

5.5 Disaster Toleration and Low-
Power Setting
The disaster tolerance experiment consists of turning
off the CPU’s cooling fan while the CPU is under full
load and at its “maximum” frequency. Moving air
from a fan through a passive heatsink greatly lowers
the heatsink’s thermal resistance and thus greatly
increases the amount of heat a heatsink can dissipate.
Hence, stopping the fan is a disastrous condition, and
an excellent test of TEAPC’s adaptation abilities.

To date, we have only tested the disaster tolerance
manually. The CPU was first allowed to stabilize its
temperature, et al while operating at a “maximum”
frequency of 3.55 GHz, and while under full load.
The CPU’s core voltage was linked to the CPU
frequency. Right after the fan was turned off, the
frequency was set manually to its “minimum” value
of 1.1 GHz; this also caused the core voltage to
decrease to about 1.0875 V. from its normal 1.5125
V. The CPU temperature dropped slightly while the
frequency and voltage were decreasing, then rose
slightly to a steady 62 degrees C. The automated
system adaptation system should be able to do as
well. At the low frequency, TEAPC was still
functional; no OS or other crashes occurred, the burn
program still worked, and Web browsing was fully
functional and executed simultaneously with the burn
and a PowerPoint presentation. Sample web pages
included video clips. Therefore, while the system
operates at reduced performance, it is still functional
at the low frequency and voltage, with the CPU fan
stopped; disaster tolerance is achieved.

The power savings at the low frequency and voltage
settings were substantial. The overall PC power
decreased from about 222 W. down to 140 W., under
full load, a power savings of 37%. Underclocking is a
useful tool.

51

1

1.5

2

2.5

3

3.5

0 50 100 150 200

C
PU

 F
re

q.
 &

 P
C

 T
ot

al
 P

ow
er

1.1

1.2

1.3

1.4

1.5

1.6

C
PU

 C
or

e
Vo

lta
ge

CPU Freq. (GHz)
PC Tot. Pwr. (100's of W.)
CPU Voltage (V.)

47

48

49

50

51

52

53

54

55

0 50 100 150 200
Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

. C
.)

Temp. Set (deg. C.)
Temp. CPU Raw (deg. C.)
Temp. CPU Averaged (deg. C.)

Figure 6. "Maximize" performance adaptation.
Vcore not linked to CPU frequency.

1

1.5

2

2.5

3

3.5

0 100 200 300 400

C
PU

 F
re

q.
 &

 P
C

 T
ot

al
 P

ow
er

1.1

1.2

1.3

1.4

1.5

1.6

C
PU

 C
or

e
Vo

lta
ge

CPU Freq. (GHz)
PC Tot. Pwr. (100's of W.)
CPU Voltage (V.)

47

48

49

50

51

52

53

54

55

0 100 200 300 400
Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

. C
.)

Temp. CPU Raw (deg. C.)
Temp. CPU Averaged (deg. C.)
Temp. Set (deg. C.)

Figure 7. Small step adaptation, 2.75 GHz
(Tset=48 C.) to 3.25 GHz (Tset=52 C.). Vcore is
linked to CPU frequency.

5.6 Real Workload Effects
Except as discussed in the following section, TEAPC
has little effect on the base performance of any PC
workload. The teapc program uses little CPU time.
Ignoring the demands of the experimentation
instrumentation and display, both of which would be
unnecessary in a production system, teapc uses less
than 5% of the CPU when fully engaged. This is
inconsequential compared to its benefits, and is
inconsequential in an absolute sense when the PC is
operated in the overclocking mode. In the latter case,
TEAPC provides a substantive increase in CPU-
bound workload performance.

If TEAPC is operated in an intermediate mode,
between maximum performance and minimum power
consumption, the performance dynamics are likely to
be as complex as the dynamics of the workload itself,
if not more complex. However, the net mean
performance is not likely to change, and unstable

performance dynamics should be avoidable with a
well-designed control system.

For example, first consider Figure 6; the frequency is
approximately constant, and the core voltage is
constant. However, the Sandra burn-in code appears
to have three distinct phases of operation, each one
using different parts of the CPU and hence using a
different amount of power; notice the step-function
shape of the power consumption. This shape repeats
with each run of the burn-in code; each run of the
latter routine executes for about 30 seconds. Next,
consider Figure 7, with TEAPC operating in an
intermediate mode, in which the frequency can vary.
The power curve is no longer neat, but mirrors the
complexity of both the frequency and temperature
curves. However, also note that the mean
performance is relatively stable.

52

1

1.5

2

2.5

3

3.5

0 100 200 300 400

C
PU

 F
re

q.
 &

 P
C

 T
ot

al
 P

ow
er

1.1

1.2

1.3

1.4

1.5

1.6

C
PU

 C
or

e
Vo

lta
ge

CPU Freq. (GHz)
PC Tot. Pwr. (100's of W.)
CPU Voltage (V.)

47

48

49

50

51

52

53

54

55

0 100 200 300 400
Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

. C
.)

Temp. CPU Raw (deg. C.)
Temp. CPU Averaged (deg. C.)
Temp. Set (deg. C.)

No load -to - Full load

Figure 8. Load adaptation test. Vcore NOT linked
to CPU frequency.

1

1.5

2

2.5

3

3.5

0 100 200 300 400

C
PU

 F
re

q.
 &

 P
C

 T
ot

al
 P

ow
er

1.1

1.2

1.3

1.4

1.5

1.6

C
PU

 C
or

e
Vo

lta
ge

CPU Freq. (GHz)
PC Tot. Pwr. (100's of W.)
CPU Voltage (V.)

47

48

49

50

51

52

53

54

55

0 100 200 300 400
Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

. C
.)

Temp. CPU Raw (deg. C.)
Temp. CPU Averaged (deg. C.)
Temp. Set (deg. C.)

No load -to - Full load

Figure 9. Load adaptation test. Vcore IS linked to
CPU frequency.

6 TEAPC Operation in
Practice
TEAPC can be operated in many ways depending on
the needs or desires of the user. The user may change
the operating characteristics dynamically to suit
current demands. Only Tset need be changed to
accommodate different circumstances. For examples,
see Table 3.

7 Summary
TEAPC demonstrates the numerous and deep
possibilities inherent in modern PC’s when advantage
is taken of low-level inputs and outputs, and, most
especially, when a well-designed feedback-control
system is used. Many of the TEAtime attributes have
been realized in TEAPC, as well as many more.

TEAPC demonstrates: operation at better-than-worst-
case performance levels, adaptation to varying
environmental and CPU loading conditions, disaster

tolerance, and low-power/high reliability operation.
We feel TEAPC could open the way for much more
versatile and cost-saving PCs, in many cases those
that already exist. Underclocking is a great tool to
help achieve several of these features.

References
[1] T. D. Burd, T. A. Pering, A. J. Stratakos, and R.
W. Brodersen, "A Dynamic Voltage Scaled
Microprocessor System," IEEE JSSC, vol. 35, no. 11,
pp. 1571-1580, November 2000.
[2] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T.
Pham, C. Ziesler, D. Blaauw, T. Austin, K. Flautner,
and T. Mudge, "Razor: A Low-Power Pipeline Based
on Circuit-Level Timing Speculation," in
Proceedings of the 2003 International Symposium on
Microarchitecture. San Diego, Calif., USA: IEEE,
ACM, December 2003.

53

[3] G. F. Franklin, M. L. Workman, and D. Powell,
Digital Control of Dynamic Systems, 3rd ed:
Prentice-Hall, 1997.
[4] T. Kuroda, K.Suzuki, S. Mita, T. Fujita,
F.Yamane, F. Sano, A. Chiba, Y. Watanabe, K.
Matsuda, T. Maeda, T. Sakurai, and T. Furuyama,
"Variable Supply-Voltage Scheme for Low-Power
High-Speed CMOS Digital Design," IEEE JSSC, vol.
33, no. 3, pp. 454-462, Mar. 1998.
[5] M. Miyazaki, J. Kao, and A. Chandrakasan, "A
175mV Multiply-Accumulate Unit Using an
Adaptive Supply Voltage and Body Bias (ASB)
Architecture," in Proceedings of the International
Solid-State Circuits Conference (ISSCC). San
Francisco, CA, USA: IEEE, February 3-7, 2002.
[6] M. Olivieri, A. Trifiletti, and A. De Gloria, "A
Low-Power Microcontroller with On-Chip Self-
Tuning Digital Clock Generator for Variable-Load
Applications," in Proc. of the 1999 International
Conference on Computer Design: IEEE, 1999.
[7] E. Rohou and M. Smith., "Dynamically
Managing Processor Temperature and Power," in
Proc. 2nd ACM Wkshp Feedback-Directed Optimiz.
(FDDO-2). Haifa, Israel: ACM, Nov. 1999.
[8] A. E. Sjogren and C. J. Myers, "Interfacing
Synchronous and Asynchronous Modules Within a
High-Speed Pipeline," in Proc. 17th Conference on
Advanced Research in VLSI, 1997, pp. 47-61.
[9] K. Skadron, T. Abdelzaher, and M. R. Stan,
"Control-Theoretic Techniques and Thermal-RC
Modeling for Accurate and Localized Dynamic
Thermal Management," in Proc. of the 2002
International Symp. on High-Performance Computer
Architecture. Cambridge, MA, USA: IEEE, 2002.
[10] K. Skadron, M. R. Stan, W. Huang, S.
Velusamy, K. Sankaranarayanan, and D. Tarjan,
"Temperature-Aware Microarchitecture," in
Proceedings of the 30th International Symposium on
Computer Architecture. San Diego, CA, USA: IEEE
and ACM, June 2003.
[11] A. K. Uht, "Achieving Typical Delays in
Synchronous Systems via Timing Error Toleration,"
Department of Electrical and Computer Engineering,
University of Rhode Island, Kingston, Technical
Report 032000-0100, March 10, 2000.
[12] A. K. Uht, "Uniprocessor Performance
Enhancement Through Adaptive Clock Frequency
Control," in Proc. SSGRR-2003w International Conf.
on Advances in Infrastructure for e-Business, e-
Education, e-Science, e-Medicine, and Mobile
Technologies on the Internet. L'Aquila, Italy:
Telecom Italia, January 6-12, 2003.
[13] A. K. Uht, "Going Beyond Worst-Case Specs
with TEAtime," Computer, vol. 37, no. 3, pp. 51-56,
March 2004.

[14] A. K. Uht, "Uniprocessor Performance
Enhancement through Adaptive Clock Frequency
Control," IEEE Transactions on Computers. In press.
[15] R. J. Vaccaro, Digital Control: A State-Space
Approach: McGraw-Hill, 1995.

Table 3. Some possible operating scenarios.

Goal Tset
Comments

Lowest power, highest
reliability Low

Frequency and CPU core voltage are minimized,
minimizing power consumption and maximizing
reliability. Suitable for web browsing (even with
broadband access), email and casual use. Could
be the normal setting for nighttime operation in
an office, to minimize operating costs yet
provide the reliability of “always on” operation.

Mid-range power,
reliability Mid-range

Frequency and core voltage change to maintain a
constant CPU temperature equal to the Tset
value. Power could still be low, with high
reliability. More computationally-demanding
tasks could be run, with negligible delay, e.g.,
limited animation, large Excel worksheets, etc.

Highest performance High: frequency is pegged
at its maximum value

In the case of the prototype, this would be a case
of limited overclocking. Reliability is minimized
and power maximized, but performance is also
maximized. Useful for intensive computational
tasks, such as FPGA net routing, or game
playing. (The maximum frequency could also be
set for no overclocking.) Could also be the
daytime setting in an office, so as to minimize
response time during working hours.

Disaster tolerance Any
For all practical purposes, TEAPC is always
enabled for disaster tolerance.

Environment change
tolerance Any

With high ambient temperatures TEAPC adapts
the system so as to keep the CPU temperature
within specifications. Performance is limited, but
the system still functions. Conversely, with low
ambient temperatures the more favorable
conditions can give improved performance.

54

